کاربرد دو روش شبکه عصبی مصنوعی mlp،rbf در برآورد رسوبات بادی (مطالعه موردی: دشت کرسیا داراب)
نویسندگان
چکیده
به دلیل عدم وجود ایستگاه های سنجش میزان رسوب در فرایند فرسایش بادی، تخمین میزان بار رسوب در زمینه این فرایند امری ضروری و مهم تلقی می شود. شبکه های عصبی مصنوعی می توانند به عنوان ابزاری کارآمد جهت برآورد و شبیه سازی رسوبات موثر واقع شوند. در این تحقیق از دو نوع شبکه عصبی مصنوعی پرسپترون چند لایه و شبکه عصبی شعاعی برای برآورد و برازش مقدار رسوبات بادی در منطقه کرسیا شهرستان داراب استفاده گردید. در این شبیه سازی که با دو روش پرکاربرد شبکه عصبی پرسپترون چند لایه و شبکه عصبی شعاعی صورت گرفت، در ابتدای امر میزان رسوبات بادی توسط تله های رسوب گیر نمونه برداری شد و با پارامترهای اقلیمی نظیر متوسط سرعت باد، تبخیر، بارندگی، رطوبت نسبی، دمای کمینه، دمای بیشینه، دمای متوسط و درصد پوشش گیاهی به ترتیب به عنوان متغیر وابسته و مستقل ورودی به مدل جهت شبیه سازی رسوبات انتخاب گردید. نتایج حاصل از عملکرد مدلها نشان داد که شبکه عصبی پرسپترون چند لایه (پیشخور با الگوریتم پس انتشار خطا) با تکنیک یادگیری گرادیان دوگانه درجه بندی نسبت به شبکه عصبی شعاعی به ترتیب با ضریب تعیین 95/0 و ریشه میانگین مربعات خطای 02/0 و ضریب تعیین 90/. و ریشه میانگین مربعات خطای 40/0 در برآورد رسوبات بادی از دقت و کارایی بالاتری برخوردارمی باشد. البته لازم به ذکر است که مزیت مهم شبکه عصبی مصنوعی پرسپترون چند لایه انعطاف پذیری بیشتر نسبت به شبکه عصبی شعاعی می باشد.
منابع مشابه
کاربرد شبکه عصبی مصنوعی در مدلسازی رسوبات معلق بادی (مطالعه موردی; دشت داراب)
فرسایش بادی با وزش باد و حمل ذرات توسط آن شروع می شود. میزان مواد حمل شده توسط فرآیند باد به عوامل متعددی بستگی دارد. بنابراین یکی از پیچیدگی های سیستم های بادرفتی، بررسی رفتار رسوبات بادی در فرآیند فرسایش بادی می باشد. فناوری اندازه گیری حمل ذرات خاک به وسیله ی باد به دو دسته-ی مستقیم و غیرمستقیم تقسیم می شود. در فناوری غیرمستقیم، با یک تحلیل زمانی متفاوت، نقاطی از چند روز تا چندین دهه برای مش...
15 صفحه اولبرآورد رسوبات معلق با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز جامیشان استان کرمانشاه)
متن کامل
مقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)
زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد. روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...
متن کاملبرآورد رسوبات معلق با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز جامیشان استان کرمانشاه)
پدیدههای فرسایش و انتقال رسوب در رودخانهها یکی از مهمترین و پیچیدهترین موضوعات مهندسی رودخانه میباشد. این پدیدهها اثرات ویژهای روی شاخص های کیفی آب، کنش کف بستر و کناره های رودخانه داشته و همچنین خسارات جبران ناپذیری به طرح های عمرانی آب وارد مینماید. پیشبینی دقیق میزان رسوب رودخانهها اهمیت قابل توجهی در مدیریت منابع آب و طراحی و ساخت و همچنین برنامه ریزی در بهره برداری از سازههای آب...
متن کاملبرآورد مشخصات پرش هیدرولیکی متحرک با کاربرد شبکه عصبی مصنوعی و روش تلفیقی شبکه عصبی-الگوریتم ژنتیک
پرش هیدرولیکی متحرک، حالت خاصی از جریان غیرماندگار است که باعث تغییر رژیم و وقوع ناپیوستگی هیدرولیکی در جریان می شود . در روندیابی جریان غیرماندگار و یا برنامه های بهره برداری کانال های روباز، آگاهی از رفتار چنین جریانی در باز ه ها ضروری است . این درحالی است که شبیه سازی عددی این پدیده به واسطه وجود ناپیوستگی هیدرولیکی و غیرماندگاری جریان، پیچیده است و داده های آزمایشگاهی در این مورد نیز محدو...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
پژوهش های فرسایش محیطیجلد ۳، شماره ۴، صفحات ۱-۱۶
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023